Analysis of Algorithms Week 4
这次回顾第四周的内容。
课程主页:https://www.coursera.org/learn/analysis-of-algorithms
Exercise
4.9
If $\alpha<\beta,$ show that $\alpha^{N}$ is exponentially small relative to $\beta^{N}$. For $\beta=1.2$ and $\alpha=1.1,$ find the absolute and relative errors when $\alpha^{N}+\beta^{N}$ is approximated by $\beta^{N},$ for $N=10$ and $N=100 .$
解:因为当$N$充分大时,对于任意$M$,下式成立
所以第一个结论成立,另一方面:
当$N=10$时,绝对误差和相对误差为:
当$N=100$时,绝对误差和相对误差为:
def e1(alpha, N):
return alpha ** N
def e2(alpha, beta, N):
return (alpha / beta) ** N
alpha = 1.1
beta = 1.2
#输出
N = 10
print(e1(alpha, N))
print(e2(alpha, beta, N))
#输出
N = 100
print(e1(alpha, N))
print(e2(alpha, beta, N))
4.71
Show that $P(N)=\sum_{k \ge 0} \frac{(N-k)^{k}(N-k) !}{N !}=\sqrt{\pi N / 2}+O(1)$
解:参考P131
Problem
1
Which of the following is an asymptotic expansion of $e^{H_{N}} ?$
- $1-\frac{1}{2 N}+O\left(\frac{1}{N^{2}}\right)$
- $N+O(1)$
- $1+\frac{1}{N}+O\left(\frac{1}{N^{2}}\right)$
- $1+\frac{1}{2 N}+O\left( \frac{1}{N^{2}}\right)$
- $1-\frac{1}{N}+O\left(\frac{1}{N^{2}}\right)$
解:
2
Which of the following has approximate value $1.22019 ?$
- $1.01^{10}$
- $1.05^{10}$
- $1.01^{20}$
- $1.01^{50}$
- $1.01^{100}$
解:
利用
可得选择
本博客所有文章除特别声明外,均采用 CC BY-NC-SA 4.0 许可协议。转载请注明来自 Doraemonzzz!
评论
ValineLivere